环保QPQ替代镀铬

时间:2024年12月28日 来源:

在QPQ的生产过程中,会有一定的废水、废气、废渣产生,我们需要采取相应的措施,使其符合排放标准。工研所QPQ生产过程中产生的废水主要是来自工件从氧化炉出来后清洗工件时所产生的,虽然从氮化炉中带出的少量氰根在氧化炉中完全被分解,但是氧化盐呈碱性不能直接排放,需要使用硫酸氢钠或硫酸等酸性物质将其中和直到pH值在8~9才可排放;工研所QPQ生产过程中的废气主要来源于调整盐的添加和工件氧化时发生化学反应产生的氨气和粉尘,QPQ在熔炼基盐和添加调整盐时会产生氨气,刺激嗅觉,废气排放必须采用排气筒(烟囱)排放,废气治理的主要工艺流程主要是:布袋除尘→喷淋式吸收塔吸收氨气→15mL排气筒排放;工研所QPQ生产过程中的废渣主要来源于氮化盐和氧化盐,为了保证盐浴的清洁度,通常将沉渣器放入氮化炉中,待取出冷却后沉积在沉渣器底部的黑色颗粒是无毒的铁渣,只有少量白色物为残留的氮化盐,残留的氮化盐中含有低浓度的氰根,不能随意丢弃,可放入氧化盐浴中进行中和处理,氧化盐的渣主要来源于工件带入的氮化盐和氧化盐反应的产物以及工件表面疏松层脱落的铁离子形成的铁渣,可以视同热处理盐浴炉炉渣一样处理。成都工具研究所有限公司利用QPQ表面处理技术,使刀具具有更长的使用寿命。环保QPQ替代镀铬

环保QPQ替代镀铬,QPQ

汽车曲轴、凸轮轴、气门、摩托车齿轮、连杆、球头销等,它承受复杂的弯曲、扭转载荷和一定的冲击载荷,轴颈表面要承受磨损,凸轮部分承受变化的挤压应力以及在挺杆的摩擦等,因此要求材料表面具有良好的耐磨性与耐蚀性能。原来一般采用镀硬铬来增加表面的耐磨性与耐蚀性,但镀铬的六价铬离子严重污染环境,因此必须采用环保的工艺方法代替。工研所QPQ技术是一种环保的工艺方法,其耐磨性比镀硬铬高2倍,耐蚀性比镀硬铬高20倍,因此用工研所QPQ技术代替镀硬铬,耐磨性和耐蚀性都会大幅度提高。环保QPQ替代镀铬QPQ表面处理可以显著提高刀具的切削性能和加工效率。

环保QPQ替代镀铬,QPQ

选择使用工研所的QPQ表面复合处理技术处理后,材料硬度明显提高,增强零件的耐磨性和抗变形能力。QPQ工艺形成的氮化物层增强了材料的耐腐蚀性,使工件表面更好地抵抗磨损,延长使用寿命。该工艺在处理过程中不会引起工件发生形变,确保了处理后工件尺寸的精确性和稳定性。此外,QPQ处理技术的效率极高,整个处理流程紧凑且高效,极大地缩短了生产周期。同时,该技术还省去了传统工艺中必需的抛光步骤,不仅降低了生产成本,还避免了抛光过程中可能引入的二次污染或损伤。这些优势使得QPQ技术在许多行业中得到广泛应用,包括链条行业、汽车制造和模具修复等领域。与其他传统的表面处理方法相比,QPQ工艺展现出了诸多无可比拟的优势。

达克罗表面处理技术是一种防腐蚀涂层技术,主要用于金属制品的表面保护。它采用化学镀的方法,将一层具有防腐蚀性能的无机镀层均匀地覆盖在金属表面。这种镀层主要由超细鳞片状锌、铝和铬等组成,由于片状锌、铝层状重叠,阻碍了水、氧等腐蚀介质与钢铁零件的接触,同时在达克罗的处理过程中,铬酸与锌、铝粉和基体金属发生化学反应,生成致密的钝化膜,这种钝化膜具有很好的耐腐蚀性能,该工艺对螺栓固件的应用较广。该技术主要用于防腐蚀保护,而膜层本省的硬度不高,不具备一定强度的耐磨性。而工研所QPQ技术在提高金属制品的表面硬度和耐磨性的同时,依靠表面的氧化膜和氮化物层可大幅度提高工件的防腐能力,它更多地用于提高金属制品的硬度和耐磨性以及防腐性。成都工具研究所有限公司通过QPQ表面处理技术,使刀具具有更好的耐磨性。

环保QPQ替代镀铬,QPQ

工研所的QPQ表面复合处理技术是一种针对金属表面的处理工艺,处理后的产品具有高硬度、高抗蚀、高耐磨、微变形、无污染等优良特性,可替代发黑、磷化、镀铬、气体渗氮、离子渗氮、渗碳等常规工艺。这是一种环保的工艺,因为它不使用有毒化学品,也不产生有害废物。该工艺还可以优化能效,减少对环境的总体影响。QPQ技术相比传统的热处理方法更加节能高效,并且QPQ技术在处理过程中实现了节能减排,对废气、废水、废渣进行中和处理再排放,使处理过程更加环保。QPQ表面处理可以提高刀具的耐热性能,使其适用于高温切削加工。低温盐浴QPQ替代离子渗氮

成都工具研究所有限公司的QPQ表面处理技术可以有效地提高刀具的切削精度。环保QPQ替代镀铬

工研所低温QPQ处理技术在航空航天、新能源等高精尖领域应用广,该技术在可以提升硬度的同时几乎不破坏其耐腐蚀性以及极小的变形,对于密封圈、垫圈等变形尺寸要求高的零件,该工艺是较好的选择。常规QPQ氮化工艺处理温度通常在500℃以上,这样会造成一些回火或调质温度低的碳钢或合金钢的心部硬度降低,从而影响其零件的整体性能,如抗拉强度等。奥氏体不锈钢由于含碳量很低,无法通过相变进行强化,常规的QPQ技术虽然可以大幅度提高其耐磨性能,但由于温度过高,导致CrN的大量析出,严重损害了不锈钢的耐蚀性能。当采用较低的温度来处理时,可以在奥氏体不锈钢表面生成“S”相,在不降低耐蚀性能的同时大幅度提高其耐磨性能。有些高速钢、模具钢等零件采用现有QPQ处理后会出现化合物层崩缺的现象,因此不敢长时间进行氮化处理,但当处理温度降低以后,随着氮原子的活性降低,化合物形成需要的时间更长,可以进行更长的氮化处理以提高扩散层的深度。环保QPQ替代镀铬

上一篇: 低温QPQ疏松层

下一篇: 高耐磨QPQ金属盐浴

热门标签
信息来源于互联网 本站不为信息真实性负责