上海生物脱氮碳源
生物方法脱氮:脱氮原理,氮化合物在自然界中以有机氮(动物蛋白、植物蛋白)、氨态氮(NH4+、NH3)、亚硝态氮(NO2-)、硝态氮(NO3-)以及气态氮(N2)形式存在,水中总氮主要包括除气态氮以外的四类。1.氨化反应。在厌氧环境下,有机氮可以转换成氨态氮。通常厂外污水是通过管道输送到污水处理厂的,管道内部基本是厌氧环境,所以通过较长距离的输送,有机氮的含量将较大程度上降低。2.硝化反应。指利用化能自养微生物在好氧条件下将氨氮转化成硝酸盐的一个过程。这个过程中,氨氮在硝化菌和亚硝化菌的作用下,被部分转化为硝态氮和亚硝态氮。随着科技的不断进步,新型的脱氮技术不断涌现,为水污染治理提供了新的解决方案。上海生物脱氮碳源
关于工艺参数的控制,这个在书本上光给出了一个参考值,比如:DO:2-4mg/L,污泥龄:10-15d,C:N:P=100:5:1,反硝化碳氮比:(4-6):1,碳磷比:20:1,MLSS:3000-4000mg/L,混合液回流比:200-300%,污泥回流比:50-100%,厌、缺氧池搅拌功率:4-8W/m³(我是根据水质、池体类型进行选型),HRT:6-8h(针对市政污水,实际经验告诉我,这个停留时间谁用谁哭),厌氧:缺氧:好氧停留时间:1:1:(3-4)(这也是谁用谁哭),甚至有些半吊子设计人员根据这些工艺参数去设计工业废水,对于这点,我真的很佩服设计人员的胆大、业主的抠门。天津脱氮工艺脱氮碳源是生物脱氮过程中提供微生物生长所需的碳源。
A+A2/O工艺与JHB工艺:A+A2/O工艺与A2/O工艺相比,在厌氧池的前段增加了一个预脱硝池,主要是为了解决污泥回流中携带的硝酸盐对厌氧释磷的影响。该工艺与UCT工艺的目的是相同的。在进水TN含量较高的情况下,该工艺不太适用,因为污泥回流中携带有大量的硝氮,预脱硝池因设计停留时间过短(一般在0.5-0.8h)无法进行完全的反硝化反应,从而影响厌氧释磷。1991年,Pitman等人提出Johannesburg(JHB)工艺,该工艺是在A2/O工艺到厌氧区污泥回流路线中增加了一个缺氧池(见图4),来自二沉池的污泥可利用33%左右(进水分配可调)进水中的有机物作为反硝化碳源去除硝态氮,以消除硝酸盐对厌氧池厌氧释磷的不利影响。其实这两个工艺是一样的,只是叫法不同。在设计中A+A2/O工艺也会设计多点进水,毕竟碳源的有效分配是关键。
pH值和碱度:硝化菌对pH值十分敏感,硝化反应的较佳pH值范围是7.2-8.0,pH值超出这个范围时,硝化反应速率会明显降低,低于6或高于9.6时,硝化反应将停止进行。另外,每硝化1g氦氮大约要消耗7.14gCaCO3碱度,因此,如果污水没有足够的碱度进行缓冲,硝化反应将导致pH值下降、反应速率减缓。因此,保证硝化反应的正常进行,往往需要投加必要的碱量以维持适宜的pH值。硝化菌经过一段时间的驯化后,硝化反应可以在较低的pH值条件下进行,但pH值突然降低也会引起硝化反应速度的骤降。有研究表明,要使硝化反应的pH值由7.0降低到6.0,大约需要驯化10d。生物脱氮利用微生物将废水中的氮化物转化为氮气。
石灰除磷,石灰除磷是投加石灰与磷酸盐反应生成羟基磷灰石沉淀。由于石灰进入水中后,首先与水的碱度反应生成碳酸钙沉淀,然后过量的钙离子才能与磷酸盐反应生成羟基磷灰石沉淀。随着pH升高,羟基磷灰石的溶解度急剧下降,即磷的去除率增加,pH大于9.5后,水中所有磷酸盐都转为不溶性的沉淀。不同废水的石灰量投加应该通过实验确定。石灰除磷的具体方法有三种。一是在污水厂初沉池之前投加,而是在污水生物处理之后的二沉池投加,三是在生物处理系统之后投加石灰并配有再碳酸化系统。脱氮装备包括脱氮设备、控制系统、管道阀门等设施。除磷脱氮装备
脱氮技术应用于环保、供水、工业废水等领域。上海生物脱氮碳源
磷酸铵镁沉淀法(鸟粪石法),向含氨氮废水中投加Mg2+和PO43-,三者反应生成MgNH4PO4•6H2O(简称MAP)沉淀。此法工艺简单,操作简便,反应快,影响因素少,能充分回收氨实现废水资源化。该方法的主要局限性在于沉淀药剂用量较大,从而致使处理成本较高,沉淀产物MAP的用途有待进一步开发与推广。Mg2++ PO43-+ NH4+= MgNH4PO4,Mg2+一般由MgCL2提供, MgCL2分子量为95; PO43-一般由NaH2PO4提供,分子量145,不考虑其他因素,理论上计算得去除1kg NH4+需要MgCL27.6kg, NaH2PO410.36kg, 按工业级MgCL22.5元/kg, 工业级NaH2PO43.0元/kg计算,去除1kg NH4+的药剂成本为50元.产生磷酸铵镁沉淀18kg(不考虑结晶水)。上海生物脱氮碳源